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Abstract. Experimental data on the temperature and electric field dependence of the Second Harmonic
Generation Intensity in the solid solution KTaO3:Li is analyzed in the framework of a new percolation-type
approach which considers the history of cluster formation averaged over a large number of samples. In order
to take into account that two cluster dipole moments turn when joining clusters together, a constraint is
imposed on the cluster growth. This constraint leads to cluster-size saturation just after the percolation
threshold. Owing to this circumstance, the connected cluster coexists with free clusters in some range of
the impurity concentration and temperature. There is qualitative agreement between the computational
results and experiments on Second Harmonic Generation intensities. The algorithm was written in C++
which allowed realistic computations to be performed on a standard PC.

PACS. 71.55.Jv Disordered structures; amorphous and glassy solids – 78.20.Bh Theory, models, and
numerical simulation – 42.65.Ky Harmonic generation, frequency conversion

1 Introduction

Incipient ferroelectrics, like SrTiO3 and KTaO3 attract
much attention because they show rather interesting phe-
nomena related to zero-point atomic quantum vibrations.
Another peculiarity of these systems is that even a rather
small concentration of dipole-type impurities triggers a
phase transition [1,2]. Sometimes these phase transitions
are thought to be of the ferroelectric-type but sometimes
glass-type (random-bond or random-field) features are be-
lieved to be dominant. For example, the Li ions which are
substituted for K in the soft matrix of potassium tantalate
lead to the creation of off-center dipoles directed in one of
6 possible directions, owing to the rather small Li radius.
On one hand these dipoles can be aligned ferroelectrically
because of an ordering interaction among them but, on
the other hand, random fields and bonds can lead to a
glass-type behavior of this solid solution.

Much information can be obtained from experiments
measuring polarization, P , and 〈P 2〉. One such experi-
ment is the Second Harmonic Generation (SHG) method,
which measures 〈P 2〉. The KTaO3:Li solid solution was in-
vestigated by the SHG method in [3] (see also references
therein). It was shown that the SHG intensity abruptly
increases in some region of temperature, which is different
for different Li concentrations. The SHG intensity satu-
rates on a further temperature decrease. The saturated
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zero-field SHG intensities increase nonlinearly with con-
centration, x. Applying an external electric field results
in a further strong increase of the SHG intensity [3]. Ow-
ing to this, there is a large difference between the zero-
field and electric field saturated SHG intensities for low
concentrations, while this difference disappears at larger
concentrations.

The large effect observed for comparatively small Li
concentrations cannot be definitely connected to the ap-
pearance of large macroscopic polarization as there is no
real evidence for a ferroelectric-type phase transition, at
least for concentrations less than 5–6%. Moreover, the
large increase of SHG intensities in an external electric
field prompts one to conclude that polarization at zero
field is suppressed for some reason, although nanoscale
polarized regions which can be aligned by the exter-
nal electric field already exist. Such a behavior differs
from the usual ferroelectric-type picture as well as from
glass-type behavior. The glass-type features of this phe-
nomenon can be connected with the random (direction
and value) dipole-dipole interaction within polarized re-
gions although inside these regions the ferroelectric-type
order is already predominant. Such a picture is new and
should be described theoretically.

Considering Li dipoles embedded into the soft matrix
of an incipient ferroelectric, a few questions arise. The
first question is: how could such a small Li concentration
govern the lattice polarization? A possible answer is that
it is just the softness of the host lattice of the incipient
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ferroelectric that plays the major role. Owing to the soft-
ness of the lattice, the Li ions feel each other even if sep-
arated by quite a distance. It implies that the “bonds”
between Li impurities can be rather long. Because of this
“bonding”, nanoscale clusters can appear at compara-
tively low Li concentrations. These clusters should not be
confused with chemical clusters, as a random Li distribu-
tion over the sites is assumed. Nevertheless, it is precisely
this randomness that plays an important role for the pos-
sible existence of percolative clusters. Indeed, owing to the
random distribution, the local density of Li concentration
in small volumes fluctuates strongly. This leads to local
satisfaction of a condition for dipole ordering. Hence, or-
dered clusters can appear, owing to a large value of the
correlation radius in the incipient ferroelectrics. Moreover,
this radius is temperature dependent and this dependence
is rather strong at low temperature. It permits the use of
percolation approach with temperature dependent bond
lengths.

Another question is how to prevent the cluster growth
from going beyond limits. Indeed, when the percolation
threshold is approached, the clusters grow rapidly and the
connected cluster appears as a result. In order to make free
nanoscale clusters stable with respect to a small change
in the parameters (for instance, temperature or concentra-
tion) the clusters should be restricted to grow up to a def-
inite size. Thereafter, their growth should be suppressed
somehow. One of the possible ways of accomplishing this
is to use constraints imposed on the cluster growth. An
example of such a constraint was recently demonstrated
in [4] for PMN. It was shown for their percolation ap-
proach, that for certain parameter values, the saturated
value for the order parameter could be considerably lower
than its maximum possible value. This suppression results
partly from random fields, while some additional assump-
tions are taken into account. We also describe a constraint
leading to the suppression of the ferroelectric phase tran-
sition in KTaO3:Li (KTL) in the framework of a simple
model. This constraint allows the free clusters to coex-
ist with the connected cluster over a wide temperature
range and at small concentrations. However, the same con-
straint does not prevent the ferroelectric phase transition
at higher concentrations.

The above mentioned experiments will be analyzed in
the framework of a percolation approach. In the litera-
ture there are numerous works in the framework of the
mean field approximation, and dealing with KTL using
random-field approaches. The percolation approach goes
beyond the mean field approximation and considers the
real cluster statistics. It takes into account the random Li
distribution that is rather important for small Li concen-
trations. This is a first attempt at performing a straight
percolation computation for KTL to explain the temper-
ature dependence of the SHG intensity.

2 Description of the model

We consider a 3D net (of minimum size 100× 100× 100),
whose sites are randomly occupied by dipole-type rigid

impurities. The first step is to create a random distribu-
tion of impurities over the sites. This is easily done with
the help of a random-number generator. The second step
is to establish the connected points (bonds), that is those
points separated by a distance not larger than the cut-off
radius. It is ineffective to solve this problem by checking
the distances between all the impurities, since this would
grow with the number of impurities N as N2. In order to
avoid this difficulty we divide the sample into subcubes,
or bricks.

First we find the occupation of the bricks by the im-
purities. Thereafter, the sites inside the bricks are again
selected randomly. An impurity position now is charac-
terized by the number of a brick and the number of a
site inside the brick. It is now straight forward to find the
nearest neighbors of each of the impurities as it is only
necessary to search for them in the nearest bricks. Hence,
the size of the bricks should be slightly larger than the
largest correlation radius for the considered temperature
range (we took it to be equal to 6a, where a is the lattice
constant). This procedure allows the data to be stored
rather effectively; a knowledge of the number of impuri-
ties in the bricks enables arrays to be created with the
appropriate length. Moreover, using dynamic memory al-
lows the arrays to be created in the same memory location
for the different samples.

What could be said about the correlation between two
dipoles if the change in orientation of one of the dipoles
leads to a change (of the same order) in the orientation
of the other dipole? We assume that there exists a max-
imal distance, R, for the dipole-dipole correlation. This
correlation cut-off radius can be caused by different phys-
ical mechanisms but to a good approximation it is pro-
portional to the polarization correlation radius, r0. This
controls the spatial decay of the electric indirect dipole-
dipole interaction: R = ar0(T ), where a is a parame-
ter dependent on the mechanism of the correlation, while
r0(T ) ∼

√
ε0(T ), where ε0 depends only on the soft TO-

mode of the displacive type. In spite of the strong total
ε(T ) dependence on the concentration of Li impurities,
x, owing to the order-disorder effect, we neglect the x-
dependence of the displacement part of the dielectric per-
mitivity. This is an assumption mainly about the order-
disorder nature of the phase transformations in KTL. This
is why, in the zero approximation, we use the expression
for the correlation radius corresponding to the x = 0
case (KTaO3)

r0 =

√√√√ A

Ts coth
Ts

T
− T0

· (1)

Here Ts is the saturation temperature and T0 and A are
constants. These quantities are known from fitting exper-
imental data to the dielectric susceptibility: Ts = 27.1 K,
T0 = 12.9 K, A = (15.073a)2 K [5]. We assume also that
the coefficient a is a weak function of x and T . Fitting
the experimental data on SHG intensities [3], we find that
the temperatures for large increases of the SHG intensi-
ties for different Li concentrations are semi-quantitatively



S.A. Prosandeev et al.: Percolation with constraints in the highly polarizable oxide KTaO3:Li 471

reproduced by this model at R ≈ 1.34r0. Hence we fix
a = 1.34.

The cut-off radius concept implies that an impurity
belongs to a cluster if its minimal distance from the clus-
ter is less than R. We assume that all impurities in-
side clusters are strongly correlated and owing to this,
they have the same direction of the dipole moment to ze-
roth approximation. We draw attention here to the fact
that the ferroelectric-type electrostatic interaction among
dipoles inside a cluster is not a consequence of the direct
dipole-dipole interaction. Rather, an indirect interaction
of dipoles through the soft mode of the host lattice is
assumed [6,7]. This interaction leads to the ferroelectric
type order inside cluster, while the direction of the cluster
dipole moment is random.

For a first point of view it might seem that the accu-
racy of the result might depend on the size of the tempera-
ture steps upon decreasing temperature. However, it turns
out that only a few special temperature points are impor-
tant. Indeed the cut-off radius increase can be described
by a set of special values at which the cluster can accept
a new impurity. This is a consequence of dealing with a
network rather than a continuum. As the cut-off radius is
proportional to the correlation radius and as the latter is
defined by temperature (1) one deduces that there are spe-
cial temperature values at which the computation should
be done. The other points would not provide essential new
information.

In order to study the cluster growth, we consider their
set of temperatures with decreasing value. At each temper-
ature, the clusters can accept new impurities that existed
in the layer between two spheres; the sphere of the pre-
vious cut-off radius and the sphere with the new cut-off
radius. After performing the study of cluster growth for a
definite sample, we create another sample with a different
(but random) distribution of the impurities. We repeat the
study of cluster growth, up to the saturation of averages.

The cluster statistics includes the computation of the
following quantities. First, one should divide the clusters
into two groups: the connected clusters and the free ones.
The signature for a connected cluster is: impurities in it
can be met equally on both upper and lower sides of the
sample (in our case it is a cube). The relative number
of impurities in the connected clusters is called the order
parameter

Pinf =

∑
i∈P

si

N
(2)

where si is the number of impurities in the ith cluster,N is
the number of impurities in the sample, and i ∈ P implies
that the cluster is connected (infinite). The order param-
eter is proportional to the macroscopic polarization as all
dipoles inside the cluster are oriented in the same direc-
tion according to our assumption. In the infinite volume
the connected cluster appears suddenly and then abruptly
increases with decreasing temperature. Note that the sum
over the connected clusters appears in (2) because, in prin-
ciple, the number of connected clusters is not limited.

However, the connected cluster is usually alone. Never-
theless, when treating a finite sample there are very rare
cases when the connected clusters are not single. More-
over, the constraint we have introduced in this work leads
to an increase in the probability of the appearance of sev-
eral connected clusters.

Averages that are computed besides the order
parameter are:

〈s〉 =

∑
i

s2
i∑

i

si
〈s〉F =

∑
i∈P

s2
i∑

i∈P
si
· (3)

In percolation theory the second average is named “the
average cluster size” (see e.g. [8]). In fact the average geo-
metrical cluster size, ξ, has nothing to do with 〈s〉. Never-
theless, we follow the standard definition of this term and
on stating “the cluster size”, we imply 〈s〉 defined above.
Note that in the first definition, the average includes all
clusters inside the sample while in the second one, only
free clusters are included.

The first average is proportional to the SHG Intensity.
Indeed this intensity is proportional to the mean squared
polarization, 〈P 2〉, [5]. Note that this polarization sums all
dipole moments, not only those of the free clusters. There
is some uncertainty here because the connected clusters
are not infinite in the computations because the cube size
is finite. Hence, this scheme is rigorous only when consider-
ing the Hyper-Rayleigh scattering case [5] in the paraelec-
tric regime. Nevertheless, the inclusion of the connected
clusters gives, in principle, a possibility to consider the
general case for the SHG intensities [5], but an infinite vol-
ume will be necessary in this case. In order to obtain the
result for the infinite volume, it is possible to use the de-
pendence of the result on cluster size. This dependence is
usually critical and after finding the corresponding expo-
nent one can obtain the necessary extrapolated value [8].

In the Hyper-Rayleigh scattering case, when the wave-
length of the laser beam is smaller than the cluster size,
one has (considering only incoherent SHG scattering in
the forward direction)

I ∼ 〈P 2〉 ∼
∑
d2
i

N
=
d2

0

∑
s2
i∑

i

si
= 〈s〉d2

0. (4)

Here d0 is the dipole moment of a single Li impurity, di
is the ith cluster dipole moment. It can be seen that the
SHG intensity is proportional to the average cluster size. It
should be noted that d0 in (4) is temperature dependent
and this dependence alone was studied in [5] to obtain
a good fit to the SHG data for quantum paraelectrics. In
the present work the temperature dependence of the other
cofactor, 〈s〉, will be investigated.

Both quantities (the order parameter and the average
cluster size) are computed for each sample and are then
averaged over samples for each temperature point. The
number of samples is selected so that the averages reach
saturation (the maximal number of samples was 1 000).
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Fig. 1. The dependence of the order parameter on tempera-
ture: 2.2% Li concentration.

The cluster growth is now limited only by the cut-off
radius. This is not sufficient to describe the glass-type be-
havior for low Li concentrations. If there are no other con-
straints, the system will undergo a ferroelectric-type phase
transition just after reaching the percolation threshold. In
order to suppress this phase transition (to decrease the or-
der parameter) one needs to impose a constraint that does
not allow large clusters to grow and become connected. A
simple form of the constraint is

sisj < B (5)

where B is a constant. The constant is found from fitting
the experimental data and takes a value of about 550. Note
that similar results were obtained using a sum of the sizes
instead of a product. Real constraints connected with a
microscopic model will be derived later.

The proposed constraint results in saturation of the
macroscopic polarization (if it appears) as well as satura-
tion of the free cluster sizes when temperature reaches the
percolation threshold. The sizes of the free clusters remain
large but do not become infinite and the connected cluster
does not grow upon further decrease of the temperature.

3 Some computational results

Firstly we computed the average size (which is propor-
tional to the SHG intensity) for KTaO3:Li with Li con-
centration 2.2%. This concentration was chosen as it cor-
responds both to the spheres (with the correlation radius)
just touching in the mean field approximation, and the
start of the phase transition. We find in this model that
the macroscopic polarization appears at 50 K. However,
owing to the constraint, the saturated value of the macro-
scopic polarization is rather low, Pinf � 1, and this value
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Fig. 2. The dependence of the average size on temperature.
Comparison between theory and experiment [3]: 2.2% Li con-
centration.

remains even at zero temperature. In principle, the value
of the order parameter can change upon enlarging the size
of the cube and it is not possible at present to say whether
a macroscopic polarization in reality exists (although very
low), or not. The value of the order parameter is so small
that there are many factors which can disturb this value
and make it equal to zero.

To study the dependence of the average cluster size on
the strength of the constraint, we introduce a phenomeno-
logical parameter, λ, in the following way

(1− λ)sisj < B. (6)

The case λ = 1 corresponds to the complete absence of
constraint, while λ = 0 gives the full constraint. Figure 1
shows the temperature dependence of the order parame-
ter for different values of λ (the Li concentration is 2.2%).
It can be seen that increasing λ leads to a large increase
of the average size. This increase looks like critical behav-
ior. The temperature dependence of the average size also
looks critical. Note that, at λ < 1, the order parameter
saturates at a value lower than 1 and it practically (but
not completely) vanishes at λ = 0. It may be seen that the
constraint suppresses the growth of the connected clus-
ter although the percolation threshold occurs in the same
temperature region.

We have also performed the computation for the tem-
perature dependence of the average cluster size for con-
centration 2.2%, and for smaller (0.8%) and larger (6.3%)
concentrations. The results are shown in Figures 2, 3
and 4. Experimental data are also shown in the same
figures. Only temperature cooling was used although for
large concentrations there is a strong hysteresis in the
experimental data. From the data obtained it is appar-
ent that the shape of the temperature dependence of the
SHG intensity looks qualitatively similar to that found in
the experiment. In all cases considered there is a sharp
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Fig. 3. The dependence of the average size on temperature.
Comparison between theory and experiment [3]: 0.8% Li con-
centration.

increase of SHG intensity in some temperature region.
The temperature at which this enhancement appears in-
creases with Li concentration. For 0.8% Li this tempera-
ture is rather small, about 30 K. For the intermediate case,
2.2% Li, this region is between 40 and 50 K. For compar-
atively large Li concentration, 6%, this region is shifted to
80–100 K. It should be stressed that the shape of the tem-
perature dependence of the SHG intensity changes. One
should draw attention to the fact that the macroscopic po-
larization is suppressed at small Li concentrations almost
completely while the macroscopic polarization is practi-
cally unsuppressed for the 6% Li concentration.

4 Discussion

It is observed that, in spite of the set of assumptions made,
the proposed model can explain the SHG-experiment at
least semi-quantitatively. The approach has three param-
eters, a, B and λ. Varying a leads to a threshold shift
while the qualitative dependencies of the averages are not
changed by this parameter. Hence this parameter can be
used to find the suitable scale of temperatures. The values
of B and λ govern the suppression of the phase transi-
tion. In fact, only the ratio B/(1− λ) is important. Low-
ering this ratio, the phase transition disappears while a
large increase of cluster size near the threshold temper-
ature remains. Hence, this value can be chosen on the
basis of the coincidence of the critical concentration for
the phase transition in theory and experiment. Note that
here again, we have the case where the qualitative picture
of the SHG intensity dependence on temperature does not
change with a parameter, but rather the amplitude of the
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SHG intensity just below threshold can be changed dra-
matically. The experiment [3] has shown that the step in
the intensity increases critically with concentration with a
large exponent (not linearly) and only at the concentration
of 6% does this dependence become slow. These data are in
very good agreement with the assumption that there is a
constraint depressing the phase transition. A similar con-
clusion was made in [4] considering relaxors like PMN. In
that case the constraint was connected with the random
fields appearing due to the nonuniformity of the charge
density. In our case the random fields can be produced by
the percolation clusters. These random fields can prevent
the growth of the clusters when the temperature decreases.
As a result, the phase transition can be suppressed. It is
evident from this that the B parameter should be con-
nected with the dipole-dipole interaction energy of the
clusters to prevent cluster flipping. The random field con-
cept within the percolation approach for solid solutions
of quantum paraelectrics will be developed elsewhere. In
the present paper we consider only a simplified version of
the theory where the constraint has rather a mathematical
than a physical meaning.

In the standard percolation approach it is usually as-
sumed that only the nearest neighbors interact. In the
present approach the interaction radius is comparatively
large, of 10 to 20 Å. It is assumed that all impurities sepa-
rated by a distance less than this interact, and that these
impurities are strongly correlated. Due to these strong
correlations, the light from the laser is understood to be
scattered by the cluster moment as a whole rather than
by the separate dipole moments of the individual impuri-
ties. Nevertheless, at a small concentration the scattering
by single impurities dominates as they are separated by a
distance longer than the correlation radius [5].
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The proposed percolation approach shows that the po-
larization in the solid solution of incipient ferroelectrics
can be suppressed by employing a constraint. This con-
straint leads to a freezing of large clusters and does not
allow the connected cluster to grow further. We believe
that applying an external electric field will align the clus-
ters and due to this the total polarization will increase.
It implies that the nanoscale domains (clusters) can be
easily oriented by employing the field-cooling procedure.
However, this is true only for a comparatively small Li
concentration. For larger concentrations, the macroscopic
polarization appears just after the percolation threshold
and the electric field cannot strongly disturb this polar-
ization as it is already practically saturated. Hence, we
believe the concentration region from 2% to 6% to be
intermediate between pure ferroelectric and pure glass
behavior. Inside this concentration region the zero-field
saturated SHG intensity increases critically at first, while
at a Li concentration of 6% it saturates.

The picture drawn above is a result of the constraint
we use. This constraint does not allow large clusters to
grow and owing to this, the macroscopic polarization is
suppressed. Future attention will be directed towards un-
derstanding the microscopic meaning of this constraint or
deriving a new one. It should be mentioned that the angu-
lar dependence of the long-range dipole-dipole interaction
prevents the appearance of a ferroelectric-type transition
whereas the short-range ferroelectric-type interaction fa-
cilitates the phase transition. It is clear from this consid-
eration that the larger the dipole moments of nearest clus-
ters, the larger the long-range interaction between them.
Hence, there is a natural cause for the suppression of large
cluster growth.

Another point to attract attention in the future is the
connection between correlation and cut-off radii. The sim-
plest approach with the coefficient a constant should be
improved. The real relation between these two radii can
be obtained from the following requirement: an impurity
belongs to a cluster if the maximum interaction energy
between this impurity and an impurity belonging already
to the cluster exceeds some specific (for these impurities)
interaction energy. A study of this complex definition will
be done separately.

Finally, we draw attention to the electric field influence
on the SHG intensities. The large influence of the electric
field on polarization at small concentrations is believed to
arise from the reorientation of the clusters (poling) in the
field. This reorientation has some peculiarities which can
be described in the framework of the spherical model [10].
One of the consequences of such a consideration is that
the longitudinal susceptibility behaves as E−1/2. It im-
plies that the polarization depends on the field in the fol-
lowing complex form: P0 + AE1/2 where A is a constant
and P0 is the zero-field polarization, which appears in field
cooling experiments for KTL [11]. As a result, the SHG
intensity is proportional to (P0+AE1/2)2 at least for small
E. This analysis shows that at small E, the macroscopic
polarization should increase at a rate that can be consid-
ered as softening the constraint. In reality this softening

could mean compensation, for example, because of the in-
teraction of the electric field with the dipole moments of
the clusters. This interaction is linear with the field and
the sum of the cluster sizes. Probably, these arguments
can be used also for relaxors where a spherical model is
effective [12].

The results obtained encourage us to employ this ap-
proach for finding averages of different thermodynamic
quantities. The real cluster statistics permits us to find any
of the physical values. For example, a calculation of light
scattering can be developed. Indeed, earlier in order to
explain the temperature dependence of the SHG intensity
for small Li concentrations a single impurity model was
used [5]. The origin of light scattering was the single impu-
rity surrounded by a polarization cloud. The radius of this
cloud is temperature dependent (through the dependence
of the correlation radius on temperature). Hence, the scat-
tering intensity proves to be also temperature dependent.
Another possibility arises if one takes into account the
cluster statistics. It has been shown in the present pa-
per that even for very small concentration of Li impuri-
ties of 0.8%, the average cluster size strongly increases at
low temperature below 30 K. This large increase could
also be a source for SHG intensity increase. A general
theory which takes into account both factors needs to be
developed.
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